\(\int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx\) [323]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 146 \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=-\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}-\frac {\sqrt {1-c x} \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{b^2 c \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{b^2 c \sqrt {-1+c x}} \]

[Out]

cosh(2*a/b)*Shi(2*(a+b*arccosh(c*x))/b)*(-c*x+1)^(1/2)/b^2/c/(c*x-1)^(1/2)-Chi(2*(a+b*arccosh(c*x))/b)*sinh(2*
a/b)*(-c*x+1)^(1/2)/b^2/c/(c*x-1)^(1/2)-(c*x-1)^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)/b/c/(a+b*arccosh(c*x))

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {5904, 5887, 5556, 12, 3384, 3379, 3382} \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=-\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{b^2 c \sqrt {c x-1}}+\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{b^2 c \sqrt {c x-1}}-\frac {\sqrt {c x-1} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))} \]

[In]

Int[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(b*c*(a + b*ArcCosh[c*x]))) - (Sqrt[1 - c*x]*CoshIntegral[(
2*(a + b*ArcCosh[c*x]))/b]*Sinh[(2*a)/b])/(b^2*c*Sqrt[-1 + c*x]) + (Sqrt[1 - c*x]*Cosh[(2*a)/b]*SinhIntegral[(
2*(a + b*ArcCosh[c*x]))/b])/(b^2*c*Sqrt[-1 + c*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5887

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Cosh
[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5904

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c*x]
*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[c*((2*p + 1)/(b*(n + 1)
))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCo
sh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}+\frac {\left (2 c \sqrt {1-c x}\right ) \int \frac {x}{a+b \text {arccosh}(c x)} \, dx}{b \sqrt {-1+c x}} \\ & = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}-\frac {\left (2 \sqrt {1-c x}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right ) \sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b^2 c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}-\frac {\left (2 \sqrt {1-c x}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b^2 c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}-\frac {\sqrt {1-c x} \text {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b^2 c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}+\frac {\left (\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b^2 c \sqrt {-1+c x}}-\frac {\left (\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b^2 c \sqrt {-1+c x}} \\ & = -\frac {\sqrt {-1+c x} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{b c (a+b \text {arccosh}(c x))}-\frac {\sqrt {1-c x} \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{b^2 c \sqrt {-1+c x}}+\frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{b^2 c \sqrt {-1+c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.83 \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=-\frac {\sqrt {1-c^2 x^2} \left (b \left (-1+c^2 x^2\right )+(a+b \text {arccosh}(c x)) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arccosh}(c x)\right )\right ) \sinh \left (\frac {2 a}{b}\right )-(a+b \text {arccosh}(c x)) \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arccosh}(c x)\right )\right )\right )}{b^2 c \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x))} \]

[In]

Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((Sqrt[1 - c^2*x^2]*(b*(-1 + c^2*x^2) + (a + b*ArcCosh[c*x])*CoshIntegral[2*(a/b + ArcCosh[c*x])]*Sinh[(2*a)/
b] - (a + b*ArcCosh[c*x])*Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(b^2*c*Sqrt[-1 + c*x]*Sqrt[1 +
c*x]*(a + b*ArcCosh[c*x])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(268\) vs. \(2(132)=264\).

Time = 0.76 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.84

method result size
default \(\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (2 \sqrt {c x -1}\, \sqrt {c x +1}\, b \,c^{2} x^{2}+2 b \,c^{3} x^{3}+\operatorname {arccosh}\left (c x \right ) b \,\operatorname {Ei}_{1}\left (-2 \,\operatorname {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{-\frac {-b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}}-\operatorname {Ei}_{1}\left (2 \,\operatorname {arccosh}\left (c x \right )+\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}} b \,\operatorname {arccosh}\left (c x \right )-2 b \sqrt {c x -1}\, \sqrt {c x +1}+a \,\operatorname {Ei}_{1}\left (-2 \,\operatorname {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{-\frac {-b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}}-\operatorname {Ei}_{1}\left (2 \,\operatorname {arccosh}\left (c x \right )+\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\operatorname {arccosh}\left (c x \right )+2 a}{b}} a -2 b c x \right )}{2 \left (c x -1\right ) \left (c x +1\right ) c \,b^{2} \left (a +b \,\operatorname {arccosh}\left (c x \right )\right )}\) \(269\)

[In]

int((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/2*(-c^2*x^2+1)^(1/2)*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*b*c^2*x^2+2
*b*c^3*x^3+arccosh(c*x)*b*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-(-b*arccosh(c*x)+2*a)/b)-Ei(1,2*arccosh(c*x)+2*a/b)
*exp((b*arccosh(c*x)+2*a)/b)*b*arccosh(c*x)-2*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)+a*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(
-(-b*arccosh(c*x)+2*a)/b)-Ei(1,2*arccosh(c*x)+2*a/b)*exp((b*arccosh(c*x)+2*a)/b)*a-2*b*c*x)/(c*x-1)/(c*x+1)/c/
b^2/(a+b*arccosh(c*x))

Fricas [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

Sympy [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=\int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}\, dx \]

[In]

integrate((-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x))**2,x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x))**2, x)

Maxima [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^2 - 1)*(c*x + 1)*sqrt(c*x - 1) + (c^3*x^3 - c*x)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^3*x^2 + sqrt(c*
x + 1)*sqrt(c*x - 1)*a*b*c^2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log(c*x
 + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate(((2*c^2*x^2 + 1)*(c*x + 1)^(3/2)*(c*x - 1) + 2*(2*c^3*x^3 - c*x)*
(c*x + 1)*sqrt(c*x - 1) + (2*c^4*x^4 - 3*c^2*x^2 + 1)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^4*x^4 + (c*x + 1)*(
c*x - 1)*a*b*c^2*x^2 - 2*a*b*c^2*x^2 + 2*(a*b*c^3*x^3 - a*b*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + a*b + (b^2*c^4*
x^4 + (c*x + 1)*(c*x - 1)*b^2*c^2*x^2 - 2*b^2*c^2*x^2 + 2*(b^2*c^3*x^3 - b^2*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1)
+ b^2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

Giac [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \text {arccosh}(c x))^2} \, dx=\int \frac {\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2} \,d x \]

[In]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x))^2,x)

[Out]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x))^2, x)